Monthly Archives: February 2018

IFR Conditions in the Northeast

GOES-16 IFR Probability, 1007 UTC on 20 February 2018, along with surface observations of ceilings and visibilities (Click to enlarge)

A complex set of Low Pressure systems over the eastern half of the United States brought multiple cloud layers and IFR conditions to the northeastern United States on 20 February. The image above shows the IFR Probability field at 1007 UTC. IFR Conditions are apparent from the Chesapeake Bay northeastward through southeastern Pennsylvania and New York and coastal New England, as well as over southeastern Ontario Province in Canada and the Canadian Maritimes. These are also regions where IFR Probabilities are high, generally exceeding 80%. In regions where IFR conditions are not observed (Western Pennsylvania and Ohio, for example), IFR Probabilities are generally small.

When multiple cloud decks are present, as occurred on 20 February, satellite-only detection of low clouds is a challenge, as shown with by the brightness temperature difference field (10.3 µm – 3.9 µm), called the ‘Night Fog’ difference in AWIPS, below. High and mid-level clouds (grey/black in the enhancement used) make satellite detection of low-level stratus impossible.  So, for example, stations with IFR conditions over Long Island sit under a much different enhancement in the brightness temperature difference field compared to stations with IFR conditions over southern New Jersey and southeastern Pennsylvania.

Because the Brightness Temperature Field cannot view the low clouds, the Nighttime Microphysics RGB (shown below the Brightness Temperature Difference field) similarly cannot identify all regions of low, warm clouds — typically yellow or cyan in that RGB.

Night Fog Brightness Temperature Difference field (10.3 µm – 3.9 µm) at 1007 UTC on 20 February 2018, along with surface observations of ceilings and visibilities (Click to enlarge)

NightTime Microphysics RGB at 1007 UTC on 20 February 2018, along with surface observations of ceilings and visibilities (Click to enlarge)

IFR Probability discriminates between fog and elevated stratus over Texas

GOES-16 IFR Probability field, 1127 UTC on 13 February, along with observations of ceilings and visibility. (Click to enlarge)

GOES-16 IFR Probability fields on 13 February at 1127 UTC, above, suggest a clear difference in sky conditions between northeast Texas, where IFR Probabilities are very high, and where IFR conditions are widespread, and north-central Texas, around Dallas, where IFR Probabilities are small, and where ceilings and visibilities do not match IFR Conditions.

In contrast, the Brightness Temperature Difference field, below, (and the Nighttime Microphysics Red/Green/Blue product, shown here in a toggle with the Brightness Temperature Difference field) shows little difference in signal between the region of IFR conditions over northeast Texas and non-IFR conditions over Dallas and environs.

GOES-16 views the top of the cloud, and a region of fog and a region of stratus can look very similar in the Night Fog Brightness Temperature Difference. Because IFR Probability fields fuse satellite observations of low clouds with Numerical Model Output estimates of near-surface saturation, IFR Probabilities can differentiate between regions of elevated stratus (where near-surface saturation is not suggested by the model), such as near Dallas, and regions of stratus that is obstructing visibility (where near-surface saturation is suggested by the model).

A toggle of all three fields is shown at the bottom of this post.

GOES-16 Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm), 1127 UTC on 13 February 2018 (Click to enlarge)

GOES-16 IFR Probabilities, Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm) and NightTime Advanced Microphysics RGB, 1127 UTC on 13 February 2018 (Click to enlarge)