Category Archives: Day/Night Band

Fog vs. Stratus over the Pacific Northwest

Brightness Temperature Difference (10.7 µm – 3.9 µm) from GOES highlight regions of water-based clouds:  water-based clouds emit 10.7 µm radiation nearly as a blackbody does, but those clouds do not emit 3.9 µm radiation as a blackbody.  Thus, the brightness temperature computed from the radiation detected by the satellite (GOES-15 in this case) — a computation that assumes a blackbody emission — is relatively cooler for the 3.9 µm data compared to the 10.7 µm data.  A water-based cloud is normally stratus, and the pertinent question for aviation purposes (for example) is:  Is the ceiling of that cloud near the surface?  (That is:  Is the stratus also a fog bank, or is it “just” mid-level stratus?)

GOESIFRP_BTD_15December2015_0500UTCtoggle

GOES-15 Brightness Temperature Difference (10.7 µm – 3.9 µm) and GOES-based GOES-R IFR Probabilities, 0500 UTC 15 December 2015 (Click to enlarge)

The toggles above (0500 UTC) and below (0900 UTC) show how the GOES-R IFR Probability fields capably screen out many regions of mid-level stratus. This is achieved by fusing the brightness temperature difference information with data from the Rapid Refresh Model. If the lowest 1000 feet of the Rapid Refresh Model is not near saturation, probabilities of IFR conditions are reduced.

GOESIFRP_BTD_15December2015_0900UTCtoggle

As above, but at 0900 UTC 15 December 2015 (click to enlarge)

GOESIFRP_BTD_15December2015_1200UTCtoggle

As above, but at 1200 UTC 15 December 2015 (click to enlarge)

Toggles from 1200 UTC (above) and 1400 UTC (below) continue to show IFR Conditions mostly confined to regions near the Willamette Valley in eastern Oregon — banked up against the higher terrain to the east of the Willamette, and also over the higher terrain of northeastern Oregon (Click here for a toggle between the 1400 UTC IFR Probability field and Topography). IFR Conditions are a function of ceilings above ground (not above Mean Sea Level), so it’s important to recognize the influence of topographic features on an IFR Probability field. Fog/Low stratus can bank up against a topographic feature, and/or it can shroud the top of a topographic feature.

Note also how at 1400 UTC high clouds have impinged upon extreme northwest Oregon and coastal western Washington. In these regions IFR conditions nevertheless persist under the high clouds, but satellite data alone does not indicate low cloudiness. In this region, the inclusion of Rapid Refresh data in the GOES-R IFR Probability algorithm allows the IFR Probability field to continue to provide useful information about the presence of fog/low stratus.

GOESIFRP_BTD_15December2015_1400UTCtoggle

As above, but at 1400 UTC 15 December 2015 (click to enlarge)

MODIS and Suomi NPP afforded high-resolution images of the fog/stratus banks over the Pacific Northwest on 15 December. The brightness temperature difference fields and MODIS-based IFR Probability fields from MODIS at 0533 and 0945 UTC, below, support the observations from the coarser-resolution GOES fields above.

MODISIFRP_BTD_15December2015_0533UTCtoggle

As above, but for MODIS data at 0533 UTC 15 December 2015 (click to enlarge)

MODISIFRP_BTD_15December2015_0945UTCtoggle

As above, but for MODIS data at 0945 UTC 15 December 2015 (click to enlarge)

GOES-R IFR Probability fields are not yet computed using data from the Suomi NPP Satellite, but the Day Night band and the Brightness Temperature Difference field give information about the presence of cloudiness. For the case of Suomi NPP data, however, it’s more important to consider surface-based observations to confirm regions of low clouds/fog or mid-level stratus. Note also that December 15 was shortly after a New Moon, and the crescent moon that could give illumination was below the horizon (that is, it had set) at 0918 and 1059 UTC.

Note that Suomi NPP Near-Constant Contrast Day Night Band imagery was scheduled to start flowing in to AWIPS II on 14 December 2015 via the SBN. It should be available in NWS offices now.

SNPPBTD_DNB_15December2015_0918UTCtoggle

Suomi NPP Day Night Band Visible Imagery (0.70 µm) and Brightness Temperature Difference (10.35 µm – 3.74 µm), 0918 UTC 15 December 2015 (Click to enlarge)

SNPPBTD_DNB_15December2015_1059UTCtoggle

Suomi NPP Day Night Band Visible Imagery (0.70 µm) and Brightness Temperature Difference (10.35 µm – 3.74 µm), 1059 UTC 15 December 2015 (Click to enlarge)

Coastal California Fog

NPP_DNB_BTD_1003UTC_12August2015toggle

Toggle between Suomi NPP Day Night Band Visible (0.70 µm) Image and Brightness Temperature Difference (11.45 µm – 3.74 µm) , 1003 UTC 12 August 2015 (Click to enlarge)

Suomi NPP data from 1003 UTC on 12 August, above, shows evidence of a cloud bank hugging the northern California coast from Cape Mendocino to San Francisco Bay. It also penetrates inland to Santa Rosa in Sonoma County. (Note also how the fires burning in interior show up well in the Day Night Band — they are emitting visible light — and in the Brightness Temperature Difference band — because they are much warmer in the 3.74 µm image than in the 11.45 µm image).

Terra overflew the California coast at ~0600 UTC and Aqua overflew the coast at ~1000 UTC; MODIS-based IFR Probabilities could be constructed from these overpasses, and they are shown below.  At 0609 UTC, High IFR Probabilities (>90%) are confined to coastal Sonoma County and along the coast from Humboldt county north.  By 1023 UTC, high IFR Probabilities stretch along the entire coast from Cape Mendocino to the mouth of San Francisco Bay, with evidence of inland penetration along river valleys.  (The Russian River, for example, and perhaps the Noyo River in Mendocino County)

MODIS_IFR_0609UTC_12August2015

Terra MODIS-based GOES-R IFR Probability fields, 0609 UTC, 12 August 2015 (Click to enlarge)

MODIS_IFR_1023UTC_12August2015

Aqua MODIS-based GOES-R IFR Probability fields, 1023 UTC, 12 August 2015 (Click to enlarge)

MODIS can give high-resolution imagery, but the infrequency of the scenes tempers its usefulness. In contrast, GOES-15 (as GOES-West) views the California coast every 15 minutes, and this excellent temporal resolution (that will improve in the GOES-R era) allows a better monitoring of the evolution of coastal fog. Hourly plots of GOES-R IFR Probability, below, computed from GOES-15 and Rapid Refresh Data show the slow increase in GOES-R IFR Probabilities along the coast as ceilings and visibilities drop.

GOESWIFR_12August2015_0400_1200anim

GOES-R IFR Probability fields, 0400-1200 UTC 12 August 2015 (Click to enlarge)

In the animation above, note the general increase in GOES-R IFR probabilities at 0900 UTC relative to 0800 and 1000 UTC. We are close enough to the Solstice that Stray Light Issues are starting. The 0800, 0900 and 1000 UTC brightness temperature difference imagery, below, shows the large signal increase at 0900 UTC that can be attributed to stray light. GOES-R IFR Probabilities can tone down that increase somewhat — because the model data will now show low-level saturation in regions where stray light erroneously suggests low clouds/fog might exist. GOES-R IFR Probabilities also screen out the constant fog signal over the Central Valley of California (and over Nevada) that is driven not by the presence of low clouds but by soil emissivity differences.

GOESWBTD_12August2015_0800_0900_1000step

GOES-15 Brightness Temperature Difference (10.7 µm – 3.9 µm), 0800, 0900 and 1000 UTC 12 August 2015 (Click to enlarge)


======================== Added =========================
GOES-14 in SRSO-R mode (see also this link) viewed the west coast starting at 1115 UTC today. The Brightness Temperature Difference field, below, (click here for mp4) shows the slow expansion/evaporation of the low stratus/fog. (GOES-R IFR Probabilities were not computed with the GOES-14 1-minute imagery). The rapid change in the field at sunrise occurs because solar radiation at 3.9 µm quickly changes the brightness temperature difference from negative to positive.

Visible Imagery is below (Click here for mp4).

960x1280_AGOES14_B1_GOES14_W_animated_2015224_133000_182_2015224_170000_182_GRAY

GOES-14 Visible Imagery (1330-1700 UTC) (Click to animate)

Dense Fog over Kansas and Nebraska

GOESR_IFRPROB_05August2015_0400_1300anim

GOES-R IFR Probability fields computed from GOES-13 and Rapid Refresh data, hourly from 0400 through 1315 UTC, 5 August 2015 (Click to enlarge)

Dense fog developed over the High Plains of Kansas and Nebraska overnight on 4-5 August 2015, and Advisories were issued by the North Platte, NE, Goodland KS and Dodge City KS WFOs. The animation above, of GOES-R IFR Probability fields computed from GOES-13 data, shows a slow expansion in the area of highest probabilities. The IFR Probability field has less spatial variability over eastern Kansas and eastern Nebraska where strong convection prevented the satellite from detecting low clouds; there, only model data predictors (from model fields that vary smoothly) could be used in the computation of the GOES-R IFR Probability fields and the IFR Probability field therefore has a smoother look.

GOES_BTD_05August2015_0700_0915_1100

GOES-13 Brightness Temperature Difference Fields (10.7 µm – 3.9 µm) at 0700, 0915 and 1100 UTC on 5 August 2015 (click to enlarge)

The GOES-13 Brightness Temperature Difference field (10.7 µm – 3.9 µm), above, at 0700, 0915 and 1100 UTC, similarly shows an expansion in the detection of water-based clouds over the High Plains. However, the field overpredicts the region of IFR conditions. The toggle between 1100 UTC IFR Probability and Brightness Temperature Difference, below, highlights how the IFR Probability can screen out regions (Southwestern Kansas, eastern Colorado) where low clouds are present, but IFR Conditions may not be. The toggle also shows how GOES-R IFR Probability can give information in regions where the Brightness Temperature Difference field has a signal for high clouds only (that is, under the convection in eastern Kansas)

GOES_IFRP_BTD_05August2015_1100toggle

Toggle between GOES-R IFR Probability and GOES-13 Brightness Temperature Difference (10.7 µm – 3.9 µm), 1100 UTC, 5 August 2015 (Click to enlarge)

Suomi NPP overflew Kansas around 0800 UTC on 5 August, and the Day Night Band imagery, below, showed both the strong convection (complete with streaks associated with lightning) and the developing low clouds. Brightness Temperature Difference (11.45 µm – 3.74 µm) fields from Suomi NPP (Link) confirm the presence of water-based clouds (yellow and orange in the enhancement used). The strong convection over eastern Kansas has multiple overshooting tops still at 0854 UTC (Link).

VIIRS_DNB__REF_20150805_0854

Suomi NPP Day Night Visible (0.70 µm) band, 0854 UTC 5 August 2015 (Click to enlarge)

Resolution Matters

MODIS_GOES_IFR_PROB_20150622_1000toggle

GOES-R IFR Probabilities computed from MODIS data and from GOES-15 data, ~1000 UTC on 22 June 2015 (Click to enlarge)

GOES-R IFR Probability was created with an eye towards using data from GOES-R (currently scheduled for launch at the end of March 2016). GOES-R will have better spatial, temporal and spectral resolution than the present GOES. A benefit of better spatial resolution is shown in the toggle above between present GOES (nominal 4-km resolution — vs. the nominal 2-km resolution that will be on GOES-R) and MODIS (1-km resolution). The small valleys along the northern California coastline are far better resolved. The fog/low clouds over San Francisco bay is also better resolved (and the same could be said for the Salinas Valley, south of Monterey Bay if this scene were shifted slightly south). (You might notice a slight 1-pixel shift between MODIS and GOES-15 IFR Probabilities. GOES-15 navigation is compromised by the lack of star-tracking data, so MODIS data are probably better navigated.)

US_11-3.9_IFRPROB_20150622_0955toggle

GOES-15 Brightness Temperature Difference (10.7 µm – 3.9 µm) and GOES-R IFR Probabilities, 1000 UTC on 22 June 2015 (Click to enlarge)

IFR Probabilities are derived from GOES-15 brightness temperature difference fields, and a benefit of the IFR Probabilities is obvious above. Brightness Temperature Differences can be driven by emissivity differences in soil. These false positives over Nevada (from the point of view of fog detection) are easily removed if the Model Data does not show low-level saturation.

VIIRS_3.74_BTD_DNB_20150622_0921

Suomi NPP Day/Night band imagery, Brightness Temperature Difference Fields (11.45 µm – 3.74 µm), and 3.74 µm Image, 0921 UTC on 22 June 2015 (Click to enlarge)

Suomi/NPP’s early morning overpass also detected the presence of fog/low stratus over the valleys along the northern California coast. The Brightness Temperature Difference field shows things distinctly. The Day-Night Visible imagery shows little in the way of fog on this day, as the waxing crescent moon had already set so no lunar illumination was present. The Day Night band is included here because it shows a very bright wildfire south of Lake Tahoe. That feature is also present in the 3.74 µm imagery. Fog and stratus is also evident in the 3.74 µm imagery, detectable based on its very smooth appearance.

Fog over Coastal California

GOES_IFR_PROB_20150529_anim_0300_1200

GOES-R IFR Probabilities computed from GOES-West and Rapid Refresh Data, 0300-1200 UTC on 29 May 2015 (Click to enlarge)

GOES-R IFR Probability fields are challenged most days by the diurnal penetration of coastal fog and stratus that occurs overnight along the California Coast. In the animation above, IFR Probabilities increase in regions along the coast, and also in valleys (such as the Salinas Valley) where fog moves inland. Note above how Monterey, Watsonville and Paso Robles all show IFR (or near-IFR) conditions as the IFR Probabilities increase. The same is true farther north at Santa Rosa and at Marin County Airport, and farther south at Avalon, Ontario, Point Mugu and LA International. IFR Probability fields routinely do capture these common fog events.

The Brightness Temperature Difference Field (10.7 µm – 3.9 µm), below, captures the motion of these low clouds as well. However, numerous ‘false positive’ signals occur over the central Valley of California (likely due to differences in soil emmissivities). The GOES-R IFR Probability field can screen these regions out because the Rapid Refresh data in the region does not show saturation in the lowest kilometer. Note also how the Brightness Temperature Difference field gives little information about low clouds where high clouds are present (over the Pacific Ocean in the images below). IFR Probability fields, however, do maintain a strong signal there because data from the Rapid Refresh strongly suggests the presence of low clouds/fog.

US_11-3.9_Sat_20150529_0400_1230anim

GOES Brightness Temperature Difference Fields, 0400-1200 UTC on 29 May 2015 (Click to enlarge)

Suomi NPP makes an overflight over the West Coast each day around 1000 UTC, and the toggle of the Day Night Band and the Brightness Temperature Difference field (11.45 µm – 3.74 µm) is shown below. The moon at this time was below the horizon, so illumination of any fog is scant; the brightness temperature difference field does highlight regions of water-based clouds (that is, stratus); however, it does not contain information about the cloud base. In other words, it’s difficult to use the brightness temperature difference product alone to predict surface conditions.

VIIRS_FOG_DNB_20150529_1010toggle

1010 UTC Imagery from Suomi NPP VIIRS Instrument: Day Night Visible Band (0.70µm) and Brightness Temperature Difference Field (11.45µm  – 3.74µm) (Click to enlarge)

GOES-14 is in SRSO-R mode, and its view today includes the west coast. The animation below shows the erosion of the fog after sunrise at 1-minute intervals. (Click here for mp4, or view it on YouTube). (Click here for an animation centered on San Francisco).

GOES-14 Visible (0.6263 µm) animation, 29 May 2015 [click to play very very large animation]

GOES-14 Visible (0.6263 µm) animation, 29 May 2015 [click to play very very large animation]

Fog along the East Coast

GOESIFR_8May2015anim

GOES-R IFR Probability Fields computed from GOES-East and Rapid Refresh Data, hourly from 2300 7 May through 1200 8 May, and surface observations of ceilings/visibility (Click to enlarge)

GOES-R IFR Probability Fields showed large values at sunset over the Atlantic Ocean east of New Jersey and the Delmarva Peninsula. As night progressed, that fog penetrated inland. The IFR Probability field accurately depicts the region where visibilities due to fog were reduced. The 0400 UTC image in the animation above (reproduced below), has qualities that highlight the benefit of a fused product. The Ocean to the east of the southern Delmarva peninsula is overlain with multiple cloud layers that make satellite detection of low clouds/fog problematic. In this region, satellite data cannot be used as a predictor and the GOES-R IFR Probability field is a flat field. Because the GOES-R IFR Probability product includes information from the Rapid Refresh model (2-3 hour model forecasts, typically) and because saturation is indicated in the lowest 1000 feet of the model, IFR Probabilities over the ocean are high in a region where satellite data cannot be used as a predictor.

GOESIFR_8May2015-29

As above, but for 0400 UTC 8 May 2015 only (Click to enlarge)

GOES-R IFR Probabilities can also be computed using MODIS data, which data has better spatial resolution than GOES (1-km vs. nominal 4-km). The toggle below of the MODIS brightness temperature difference and the GOES-R IFR Probability shows a very sharp edge to the expanding fog field over New Jersey.

MODISIFR_BTDtoggle_0249_08May2015

MODIS Brightness Temperature Difference (11µm – 3.9µm) and MODIS-based GOES-R IFR Probabilities, ~0250 UTC on 8 May, 2015 (Click to enlarge)

The Gulf Stream is apparent in the Brightness Temperature Difference field above and IFR Probabilities are high over the ocean between the coast and the Gulf Stream. In the absence of observations, how much should those high IFR Probabilities be believed. There is high dewpoint air (mid-50s Fahrenheit) along the East Coast at this time, and advection fog could be occurring, for example. Suomi NPP also overflew the region shortly after midnight. The toggle below, of brightness temperature difference and the Day Night Band confirms the presence of (presumably) low clouds over the cold Shelf Water of the mid-Atlantic bight.

SNPPDNB_BTDtoggle_0643_08May2015

Suomi NPP Brightness Temperature Difference (11.35 µm – 3.74 µm) and Suomi NPP Day Night Band Visible Imagery (0.70 µm) at night, 0643 UTC on 8 May, 2015

Fog over Nebraska under high clouds

GOES_RIFRProb5May2015_0300_1200

GOES-R IFR Probabilities, 0315-1215 UTC, 5 May 2015 (Click to enlarge)

Dense Fog developed over the Hastings, Nebraska WFO overnight, leading to the issuance of Dense Fog Advisories. The GOES-R IFR Probabilities, above, show a steady increase in probabilities over the night as the fog develops. The relatively flat nature of the IFR Probability field is characteristic of GOES-R IFR Probabilities that do not include information from satellite (that is, only model fields are being used here to educe IFR probabilities). IFR Probability fields are a fused product, typically blending information from model fields and from satellite data. However, this was a case of fog developing under an extensive cirrus shield so that satellite data were not used as a predictors. The 10.7µm – 3.9µm Brightness Temperature Difference field, shown below, gives no information about surface conditions. That the IFR Probability fields neatly overlap the region of developing IFR conditions is testimony to the accuracy of the model field in simulating the lower part of the troposphere.

When only model data are used, as above, features in the field that are parallel to surface topography contours can become evident in the GOES-R IFR Probability fields. This is related to interpolation of the lowest 1000 feet of model relative humidity fields (moisture information that is used as a predictor in the computation of the IFR Probability) in regions of sloping topography.

In the animation above, note that the IFR Probabilities increase in the final frame. Over most of the scene, at 1215 UTC, the sun has risen and Daytime Predictors are being used to compute IFR Probabilities. (The dividing line between Daytime — to the east — and nighttime — to the west — is visible stretching north-northwest to south-southeast from the extreme northeast corner of Colorado). IFR Probabilities are somewhat higher during the day (compared to night) because visible imagery is incorporated into the satellite predictors; more accurate cloud clearing means that IFR Probabilities increase just a bit.

US_11-3.9_Sat_20150505_0630_1300anim

GOES-13 Brightness temperature difference fields (10.7 µm – 3.9 µm) over the Great Plains, 0630-1300 UTC, 5 May 2015 (Click to enlarge)

Suomi NPP overflew Nebraska, giving a view of the extensive cirrus shield. The Day Night Band gave crisp imagery as the Moon was very nearly full.

DNB_OBS_0740

Suomi NPP Day Night Band Visible Imagery (0.70 µm) at 0740 UTC on 5 May 2015 (Click to enlarge)

Dense Fog over the Red River of the North

Dense Fog advisories were issued by the National Weather Service in Grand Forks as visibilities in the WFO dropped to near zero. How did the IFR Probability Fields and traditional Brightness Temperature Difference Fields capture this event? The animation below shows the brightness temperature difference field (10.7 µm – 3.9 µm) from GOES-13. Initially, a swath of mid-level and upper-level clouds covered the Red River Valley (this system had produced very light rains on Monday the 27th), but the clouds moved east and dense fog quickly developed (Cavalier, ND, for example, showed reduced visibility already at 0400 UTC).

Reg_11-3.9_Sat_20150428_03_11

GOES-13 Brightness Temperature Difference (10.7 µm – 3.9 µm) hourly from 0315 to 1115 UTC on 28 April 2015, along with surface plots of ceilings and visibility (Click to enlarge)

The IFR Probability fields for the same time, below, better capture the horizontal extent of the fog.  For example, the strong signal in the Brightness Temperature Difference field over South Dakota at the end of the animation, above, is not present in the IFR Probability fields.  IFR Conditions are not occurring over South Dakota.  The good match between the developing IFR Probability fields and the developing fog testifies to the satellite view of the fog and the accurate simulation of this event by the Rapid Refresh model.

GOES_IFR_PROB_20150428_03_11

GOES-R IFR Probability Fields hourly from 0315 to 1115 UTC on 28 April 2015, along with surface plots of ceilings and visibility (Click to enlarge)

Geostationary GOES fields give good temporal resolution to the evolving field. Polar orbiting satellites, such as Suomi NPP (carrying the VIIRS instrument) and Terra/Aqua (each carrying MODIS) each gave snapshot views of the developing fog. At 0355, IFR Probabilities are low, and the Red River valley is mostly obscured by higher clouds. Four hours later, at 0805 UTC, dense fog has developed and IFR probabilities are large.

MODIS_FOG_IFR_PROB_20150428_0355

Terra MODIS Brightness Temperature Difference (11µm – 3.9µm) and IFR Probability fields, ~0355 UTC on 28 April 2015 (Click to enlarge)

MODIS_FOG_IFR_PROB_20150428_0805

Aqua MODIS Brightness Temperature Difference (11µm – 3.9µm) and IFR Probability fields, ~0805 UTC on 28 April 2015 (Click to enlarge)

Suomi NPP also viewed the fog field. The toggle between the Day Night Band and the Brightness Temperature Difference field (11.45µm – 3.74µm), below, shows evidence of fog in the visible Day Night band imagery.  The lights of western North Dakota’s oil shale fields are also evident.

Polar-orbiting satellites give excellent high-resolution imagery of fog fields. When used in concert with the excellent time resolution of GOES imagery, a complete picture of the evolving fog field can be drawn.

SNPP_DNB_BTD_0815UTC_28April2015

Toggle between Day Night Band (0.70 µm) and Brightness Temperature Difference (11.45µm – 3.74µm) field from VIIRS on Suomi NPP at 0815 UTC (Click to enlarge)

Sharp edge to Fog/Low Stratus over east Texas

US_11-3.9_Sat_20141229_2_14anim

Brightness Temperature Difference Fields (10.7µm – 3.9µm) and surface observations of ceilings and visibilities, Hourly from 0200 through ~1400 UTC [Click to enlarge].

Traditional method of fog/low stratus detection revealed a sharp edge to clouds over east Texas during the morning of 29 December 2014. The animation above reveals several difficulties inherent in using brightness temperature difference fields in diagnosing fog/low stratus. Where multiple cloud layers are present — such as along the coast at 0500-0600 UTC — the brightness temperature difference product cannot view the low clouds. At sunrise, increasing amounts of solar 3.9µm radiation causes the brightness temperature difference product to flip sign. The signal for low clouds is still there, however.

GOES_IFR_PROB_20141229_2_14anim

GOES-R IFR Probabilities and surface observations of ceilings and visibilities, Hourly from 0200 through ~1400 UTC [Click to enlarge]

The animation of GOES-R IFR Probabilities, above, created from GOES-13 data and Rapid Refresh Model data, shows high IFR Probabilities over east Texas where low ceilings and reduced visibilities prevailed, including metropolitan Houston. The algorithm suggests the likelihood of fog/low stratus underneath the cirrus debris that is over the coast around 0500-0600 UTC as well, because the Rapid Refresh model output in that region strongly suggests low-level saturation. In addition, the fields show only minor changes through sunrise (the effect of the terminator is present in the final image in the loop).

MODIS data from either Terra or Aqua can be used to produce IFR Probabilities. The data below is from 0442 UTC. Polar orbiter data is infrequent, however, so temporal monitoring of the fog/low clouds is more easily achieved using GOES data.  MODIS data, like the GOES data above, shows the effects of cirrus clouds on Brightness Temperature Difference fields and on IFR Probabilities.  Cloud predictors of low clouds/fog from satellite cannot be used in regions of cirrus, so IFR Probabilities are smaller in regions where multiple cloud layers exist, which regions are where only Rapid Refresh Data can be used as predictors.

MODIS_IFR_PROB_BTD_20141229_0442

0442 UTC MODIS-based brightness temperature difference and IFR Probability fields (Click to enlarge)

 

Brightness Temperature Difference fields can also be created from Suomi/NPP data and the orbital geometry on 29 December meant that eastern Texas was viewed on two sequential overpasses.  IFR Probabilities are not quite yet computed using Suomi NPP data, but the brightness temperature difference fields can be used to show where water-based clouds exist. They show a very sharp western edge to the clouds.

VIIRS_FOG_20141229_0723_0904

Brightness Temperature Difference Fields (11.35µm – 3.74µm) from Suomi NPP at 0723 and 0904 UTC on 29 December 2014 (Click to enlarge)

The Day Night Band on Suomi NPP produces visible imagery at night. When lunar illumination is strong, it can provide compelling imagery. On 29 December 2014, however, the moon set around 0600 UTC, so no lunar illumination was available, and fog/low clouds are very difficult to discern in the toggle below between the Day Night Band and the brightness temperature difference field at 0723 UTC.

VIIRS_FOG_DNB_20141229_0723

Day Night Band and Brightness Temperature Difference Fields (11.35µm – 3.74µm) from Suomi NPP at 0723 on 29 December 2014 (Click to enlarge)

 

Fog over the Southern Plains

Fog developed over Texas, Oklahoma and Arkansas early in the morning of 9 December 2014. Multiple cloud layers made traditional satellite detection (that is, using brightness temperature difference field (10.7µm – 3.9µm)) problematic. How did the fused product, GOES-R IFR Probability perform? The animation below shows the hourly evolution of IFR Probability from 0215 UTC through 1415 UTC.

IFR_09Dec2014_02_14anim

GOES-R IFR Probabilities, hourly from 0215 through 1415 UTC on 9 December 2014, along with surface plots of ceilings and visibilities (Click to enlarge)

There are widespread reports of IFR conditions over southeast Oklahoma and northern Texas, as well as over Arkansas in the Arkansas River Valley. IFR Probability fields generally overlap the region of reduced ceilings and visibilities.

Note that the probabilities increased over west Texas between 1315 and 1415 UTC. The boundary between day and night predictors is also apparent at 1415 UTC as a SW to NE line over the Texas Panhandle. Probabilities change as night switches to day because different combinations of satellite predictors can be used. In particular, the use of visible imagery improves cloud clearing and therefore IFR Probabilities increase in regions where low clouds exist (because the possibility of clouds being present is more easily detected).

The toggles below show data from 0615, 1115 and 1415 UTC and demonstrate why a fused product can give better information than a satellite-only product. Intermittent high clouds over the southern Plains prevented GOES-13 from identifying regions of low clouds (Cirrus clouds in the enhancement below appear as dark regions). IFR Probabilities can give valid information in these regions because the Rapid Refresh Model gives information about the possibility of low-level saturation. There are large regions at 1415 UTC over west Texas that are covered by cirrus clouds; despite the inability of the satellite to detect low clouds, IFR Probability maintains a strong signal there where IFR Conditions are occurring. The 1415 Brightness Temperature Difference field, in contrast to the IFR Probability field, gives very little information because increasing amounts of solar radiation are changing the relationship between 10.7µm and 3.9µm radiation at 1415 UTC.

IFRPROB_BTD_0615_9Dec2014

GOES-R IFR Probabilities and GOES-13 Brightness Temperature Difference Fields (10.7µm – 3.9µm), 0615 UTC on 9 December 2014, along with surface observations of ceilings and visibilities (Click to enlarge)

IFRPROB_BTD_1115_9Dec2014

As above, but at 1115 UTC (Click to enlarge)

IFRPROB_BTD_1415_9Dec2014

As above, but at 1415 UTC (Click to enlarge)

A near-Full Moon on 9 December means that the Day Night Visible imagery from Suomi NPP produced great imagery of the clouds over the southern Plains. The toggle below shows the Day Night band, the brightness temperaure difference field (11.35µm – 3.74µm) and the topography. Very narrow fog banks are apparent over southeast Oklahoma and over Arkansas, nestled into narrow valleys. The Brightness Temperature Difference field distinguishes between water-based clouds (presumably low stratus or fog) in orange and ice clouds (cirrus) in black.

SNPP_BTD_DNB_0839UTC_09Dec2014

Suomi NPP Brightness Temperature Difference (11.35µm – 3.74µm) fields, Day Night band imagery and Color-shaded topography, 0839 UTC 9 December 2014 (Click to enlarge)

The fog event over Dallas was photographed from the air: Link.