Category Archives: GOES-16

IFR Probability, Brightness Temperature Differences and Nighttime Microphysics RGB estimates of Fog

GOES-16 Brightness Temperature Difference (10.3 µm – 3.9 µm), Nighttime Microphysics RGB and IFR Probability Fields, 1126 UTC on 17 December 2019. Also included are sky conditions, ceilings and visibilities in black or green.

Fog and low clouds were widespread over the eastern half of the United States on 17 December 2019. In this example over ArklLaTex the Brightness Temperature Difference suggests low stratus clouds over the region, and the Nighttime Microphysics shows a signal congruent with low clouds. Note, however, that observations over much of the region do not suggest IFR conditions are present. Accordingly, IFR Probability shows fairly low probabilities in this region, with values increasing to the north where visibilities decrease. IFR Probability fields screen out regions of elevated stratus because the Rapid Refresh model in this region does not suggest low-level saturation. Over northeast Oklahoma and northwest Arkansas, however, saturation at low levels is more likely and IFR Probabilities there are larger.

GOES-16 Brightness Temperature Difference (10.3 µm – 3.9 µm), Nighttime Microphysics RGB and IFR Probability Fields, 1126 UTC on 17 December 2019. Also included are sky conditions, ceilings and visibilities in green.

At the same time, high clouds overspread most of the east coast as a storm moved through the area. The high clouds prevent the satellite from seeing low clouds, so both the Brightness Temperature Difference and the Nighttime Microphysics RGB will not have a signal that comports with low stratus detection. However, IFR Probability includes a signal from the Rapid Refresh model if that model shows low-layer saturation in a region of multiple cloud layers; IFR Probability has a strong signal on this date over the east coast were clouds and fog are widespread. IFR Probability also shows IFR Conditions under the low clouds that the satellite does detect over eastern Ohio, and correctly notes the a region of higher ceilings over West Virginia, western Virginia and eastern Tennessee.

GOES-16 Brightness Temperature Difference (10.3 µm – 3.9 µm), Nighttime Microphysics RGB and IFR Probability Fields, 1126 UTC on 17 December 2019. Also included are sky conditions, ceilings and visibilities in green.

When high clouds are not present, there are different equally good ways to estimate low clouds, and that’s shown above. The Brightness Temperature Difference fields, the Nighttime RGB and the IFR Probability fields all tell a similar tale: Much of Iowa and regions to the south and northeast have low ceilings and reduced visibility.

Careful observers to the toggle note that the RGB has a different color over Wisconsin compared to Iowa. In part this is because the Brightness Temperature Field has values that are smaller over Wisconsin. A bigger driver of the color difference, however, is the 10.3 µm brightness temperature — the blue component of the Nighttime Microphysics RGB. Values are around -25º C over Wisconsin, and closer to -10º C over Iowa!

Nighttime Microphysics RGB and Band 13 10.3 µm Brightness Temperature, 17 December 2019

Advection Fog and Multiple Cloud Layers

GOES-16 Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm), Low IFR Probability and Advanced Nighttime Microphysics RGB at 0837 UTC on 13 March 2019 (Click to enlarge)

An intense early Spring storm produced blizzard conditions over the western Great Plains on 13 March 2019 (See this blog post for example). The southerly flow in advance of the storm moved moist air over a dense snowpack over the upper Midwest, resulting in dense Advection Fog. The animation above cycles between the Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm), the Advanced Nighttime Microphysics RGB that uses the Night Fog Brightness Temperature Difference as the ‘green’ and GOES-16 Low IFR Probabilities.

At 0837 UTC, high clouds had not yet covered all of the upper Midwest, and the satellite still viewed stratus clouds over Wisconsin and Minnesota (bright cyan in the Night Fog Brightness Temperature difference enhancement). Note the difference in the Low IFR Probability field in regions where high clouds are present (Iowa and states to the south and west) and where they are not. Low IFR Probability has a pixelated look over Wisconsin because modest satellite pixel-level variability is included in the IFR probability field. Over Iowa, in contrast, satellite data gives no information about reductions to visibility under the thick cloud cover; low-level data from the Rapid Refresh model drives the Low IFR Probability field there. Probabilities are high in regions where observations suggest IFR/Low IFR conditions are present. This suggest the Rapid Refresh is simulating the evolution of the atmosphere well over the Plains.

The Advanced Nighttime Microphysics RGB can detect low clouds — but only when high clouds are not in the way. For this case, the RGB signal over Wisconsin is consistent with stratus and fog, but over Iowa the signal is consistent with cirrus that is occurring there. Surface restrictions in visibility and lowered ceilings are similar in the two states, and the IFR Probability field has similar values in the two states.

By 1502 UTC on 13 March (below), high clouds had overspread the entire Midwest; Low IFR Probability relies almost entirely on Rapid Refresh Model estimates of low-level saturation.  That is why the field over northern Minnesota and northern Wisconsin is flat.  Some holes in the high clouds are suggested by the pixelated look of the field in Iowa and southern Wisconsin.

GOES-16 Low IFR Probability, 1502 UTC on 13 March 2019 (Click to enlarge)

Cloud Layers and Detection of IFR Conditions

GOES-16 Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm), Nighttime Microphysics RGB and GOES-16 IFR Probability at 1116 UTC on 22 February 2019; Surface observations of ceilings and visibilities at 1100 UTC are also plotted (Click to enlarge).

A strong storm embedded within a subtropical jet stream over the southern United States was associated with widespread fog on the morning of 22 February 2019. This screen-capture from this site shows Dense Fog Advisories over much of Georgia, and over regions near Dallas. Which products allowed an accurate depiction of the low ceilings and reduced visibilities?

The toggle above cycles between the Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm), which product identifies low clouds (cyan blue in the default AWIPS enhancement shown) because of differences in emissivity at 3.9 µm and 10.3 µm from small water droplets that make up stratus clouds, the Nighttime Microphysics RGB, which RGB uses the Night Fog Brightness Temperature Difference as it green component, and the GOES-16 IFR Probability product.  IFR conditions are defined as surface visibilities between 1 and 3 miles, and ceiling heights between 500 and 1000 feet above ground level.  The plotted observations help define where that is occurring.  Multiple cloud layers from Arkansas east-northeastward make a satellite-only detection of IFR conditions challenging.  IFR Probability gives useful information below cloud decks because model-based saturation information from the Rapid Refresh Model fill in regions below multiple cloud decks where satellite information about low clouds is unavailable.

The toggle below shows the same three satellite-based fields (Night Fog Brightness Temperature Difference, Nighttime Microphysics RGB and IFR Probability)  at the same time, but centered over Oklahoma.  In this case, the Rapid Refresh Data are used to screen out a region of elevated stratus over northeast Oklahoma. Note that these is little in the Night Fog Brightness Temperature Difference field to distinguish between the IFR and non-IFR locations.

GOES-16 Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm), Nighttime Microphysics RGB and GOES-16 IFR Probability at 1116 UTC on 22 February 2019; Surface observations of ceilings and visibilities at 1100 UTC are also plotted (Click to enlarge).

GOES-R IFR Probability over the southeast United States in this case is identifying regions of IFR conditions underneath multiple cloud decks (and also where only the low clouds are present) by incorporating low-level saturation information from the Rapid Refresh model. Over Oklahoma, non-IFR conditions under an elevated stratus deck are identified (and screened out in IFR Probability fields) by the lack of low-level saturation information in the Rapid Refresh.

Advection Fog in Warm Air Advection Regimes

‘Night Fog’ Brightness Temperature Difference field (10.3 μm – 3.9 μm) and GOES-R IFR Probability at 1202 UTC on 4 February 2019 (Click to enlarge)

Advection Fog during thaws, when very cold surfaces are overrun by air with dewpoints above freezing, can be very dense, and very difficult to detect via satellite; typically advection fog accompanies extratropical cyclones and their accompanying multiple cloud layers. The toggle above compares the ‘Night Fog’ Brightness Temperature Difference field (10.3 μm – 3.9 μm), historically used to detect low stratus because of radiation emissivity differences of clouds made up of water droplets at those two wavelengths, and GOES-R IFR Probability which fuses information from the satellite — not particularly useful in this case as far as low-level visibility is concerned — with information about low-level saturation from the Rapid Refresh Model. GOES-R IFR Probability gives a much more accurate depiction of exactly where the reduced visibilities and lowered ceilings are present, a vital piece of information for aviation (for example).

In addition, Low IFR Probability suggests where the lowest ceilings and greatest visibility reductions occur. The toggle below compares IFR Probability and Low IFR Probability at 1202 UTC (Here’s the toggle at 1642 UTC).  As expected, the region of Highest Low IFR Probability is contained within the region of highest IFR probability;  values of Low IFR Probability are somewhat smaller than those for IFR Probability (the same colorscale is used for both products).

GOES-R IFR Probability and Low IFR Probability at 1202 UTC on 4 February 2019 (Click to enlarge)

Fog over the Northeast: Where is it?

GOES-16 ABI Band 02 (0.64 µm), Band 13 (10.3 µm), Day Fog Brightness Temperature (3.9 µm – 10.3 µm), Day Snow Fog RGB and Band 5 (1.61 µm) at 1602 UTC on 28 December 2018 (Click to enlarge)

The animation above cycles through the GOES-16 Visible Imagery (Band 2, 0.64 µm), Band 13 (Clean Window Infrared, 10.3 µm), the Day Fog Brightness Temperature Difference (3.9 µm – 10.3 µm), the Day Snow Fog Red Green Blue (RGB) Composite and the Snow/Ice near-Infrared channel (Band 5, 1.61 µm) that is the green component of the Day Snow Fog RGB. (That’s very apparent in this toggle between the Day Snow Fog RGB and the 1.61 µm) Do any of these products give you a good idea of where IFR conditions (Low ceilings and reduced visibilities) are occurring?

Consider the toggle of visible imagery below, with and without surface observations of ceilings and visibility. It is a difficult prospect to relate the top-of-cloud reflectance (which is what the visible imagery gives you!) to the ceilings beneath the cloud.

GOES-16 ABI Band 02 (0.64 µm) with an without surface observations of ceilings and visibility at 1602 UTC on 28 December 2018 (Click to enlarge)

GOES-16 IFR Probability fields blend satellite observations of cloud with Rapid Refresh model data that predicts saturation near the surface. That model data, incorporated into a statistical prediction of IFR conditions, allows the field to outline the regions where low ceilings and reduced visibilities occur, as shown in the toggle below with and without observations. (Click here to see the Visible and IFR Probability fields toggled). The inclusion of near-surface saturation values extracted from the Rapid Refresh model allows the IFR Probability field to discriminate between low ceilings/fog — as over central Pennsylvania, Massachusetts and central Ohio (among other places) — and mid-level stratus — as over southwestern Pennsyvlania and surrounding Lakes Erie and Ontario (among other places).

GOES-16 IFR Probability with surface observations of ceilings/visibilities at 1602 UTC on 28 December 2018 (Click to enlarge)

Fog over the Pacific Northwest: Where is it?

GOES-17 imagery in this blog post is made from GOES-17 Data that are preliminary and non-operational!

Night Time Fog Brightness Temperature Difference (10.3 µm – 3.9 µm) from GOES-16 and (preliminary, non-operational) GOES-17, 1202 UTC on 3 December 2018 (Click to enlarge)

The toggle above shows GOES-16 and GOES-17 Night Fog Brightness Temperature difference fields over the Pacific Northwest shortly after 1200 UTC on 3 December 2018.  The Pacific NW is a lot farther from the sub-satellite point (nadir) of GOES-16 (75.2 West Longitude) than from the sub-satellite point (nadir) of GOES-17 (at 137.2 W Longitude).  Thus, the GOES-16 view is has inferior spatial resolution.  There are also different parallax shifts for clouds between the two views.  The scene includes plenty of stratus, based on the observations, and isolated pockets of IFR conditions:  Spokane WA, Stampede Pass, WA, Pendleton OR, Medford OR, Salem OR.  It’s difficult to tell at a glance from the Brightness Temperature Difference field where the lowest ceilings and poorest visibilities are — because the satellite sees the top of the cloud, and it’s difficult to infer cloud base properties from infrared imagery of the cloud top.

The Advanced Nighttime Microphysics RGB can also be used to detect low ceilings, because its green component is the Night Fog Brightness Temperature Difference as shown above.  The toggle below compares the GOES-16 and GOES-17 RGBs.  Again, it is difficult to pinpoint at a glance where the IFR conditions are occurring in this product.

There are subtle differences in the colors of the RGB from the two satellites.  These are related to the distance from the sub-satellite point.  Limb cooling will cause the brightness temperatures from the GOES-16 Clean Window to be slightly cooler than the GOES-17 values, and that will affect the color:  The Clean Window is the Blue component of the RGB.  In addition, the Split Window Difference values will be slightly different because of the different amounts of limb cooling in 12.3 µm and 10.3 µm brightness temperatures.  GOES-17 data also includes striping that is being addressed with ongoing calibration work with the satellite.

Advanced Nighttime Microphysics RGB from GOES-16 and GOES-17 at 1202 UTC on 3 December 2018 (Click to enlarge)

The toggle below shows, (from GOES-16 data) the 10.3 µm – 3.9 µm Brightness Temperature Difference, the Nighttime Microphysics RGB, and the IFR Probability fields at 1202 UTC. IFR Probability fields include information about low-level saturation from the Rapid Refresh model, and that information allows the product to screen out regions of mid-level stratus; thus, the region of IFR conditions is better captured.  There are three main regions:  eastern WA southwestward to Pendleton OR, Seattle southward into Oregon, and the peaks of central Washington.

GOES-16 Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm), Nighttime Microphysics RGB and IFR Probability, 1202 UTC on 3 December 2018 (Click to enlarge)

Fog over the Dakotas and Minnesota: Where is it?

GOES-16 “Red Visible” Band 2 0.64 µm imagery at 1502 UTC on 21 November 2018 (Click to enlarge)

Consider the GOES-16 Visible (Band 2, 0.64 µm) Image above.  Where is the fog in this image?  Certainly you can tell where clouds exist, and if animated, you could identify snow on the ground (because it wouldn’t move like clouds do).  Alternatively, you could toggle between the visible and the Snow/Ice band (Band 5, 1.61 µm), below;  regions of snow/ice — such as in western North Dakota, or northeastern South Dakota, or Ontario appear bright in the 0.64 µm but dark in the 1.61 µm.

GOES-16 “Red Visible” Band 2 0.64 µm imagery and “Snow/Ice” Band 5 1.61 µm imagery at 1502 UTC on 21 November 2018 (Click to enlarge)

The Day Fog Brightness Temperature Difference product (3.9 µm – 10.3 µm) highlights low clouds. Stratus clouds with water droplets are scatterers of incoming solar radiation. The clouds over Minnesota and Iowa appear to be composed of much smaller water droplets, however, because they are so much warmer — the brightness temperature difference is much larger.  Smaller droplets are better scatterers of incoming solar radiation.  The image below shows the field, also at 1502 UTC on 21 November.  Are there any differences in this field that suggests fog might be present in one location, but not in the other?

GOES-16 Day Fog Brightness Temperature Difference (3.9 µm – 10.3 µm) imagery at 1502 UTC on 21 November 2018 (Click to enlarge)

The Day Snow Fog RGB composite, below, highlights regions of low clouds, snow/ice, and higher clouds.  Snow (and clouds made of ice) are shaded red, low clouds are shades of grey/blue.  Where is the fog?

GOES-16 Day Snow Fog RGB imagery at 1502 UTC on 21 November 2018 (Click to enlarge)

GOES-R IFR Probability Fields are a better predictor of where IFR conditions (that is, reduced visibility and lowered ceilings as might occur with fog) are occurring.  It combines satellite information and low-level informatio0n about saturation (from the Rapid Refresh model).  This fusing of data accentuates a satellite strength (detection of low clouds made up of water droplets — that is, stratus) and the model strength (namely, where are the low-level saturated?)   In the image below, fog and high probabilities of IFR conditions neatly overlap.  This toggle is between the visible, Day Snow-Fog RGB and IFR Probability field.

GOES-16 IFR Probability at 1502 UTC on 21 November 2018 along with surface observations of ceilings and visibility (Click to enlarge)

IFR Conditions with cold-season extratropical cyclones

GOES-16 Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm), Advanced Night Time Microphysics RGB, and GOES-16 IFR Probability fieds at 1142 UTC on 8 October 2018 (Click to enlarge)

Fog and low stratus were widespread on 8 October over the Plains, in particular over Iowa and Minnesota.  What satellite tools exist to highlight such regions of lowered ceilings and reduced visibility?

When IFR conditions — fog and low stratus — occur with extratropical cyclones that generate multiple cloud layers, satellite detection of low clouds is difficult because higher clouds get in the way of the near-surface view. The animation above steps through the Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm; low clouds in the default enhancement are cyan), the Nighttime Microphysics Red-Green_blue (RGB) composite (low clouds in the RGB are cyan to yellow, depending on the temperature) and the GOES-R IFR Probability field (Probabilities for IFR conditions are highest in orange/red regions) for 1142 UTC on 8 October 2018, when low ceilings were widespread over the Plains and East Coast. Abundant high clouds rendered the Night Fog Brightness Temperature difference product (and, by extenstion, the Night Time Microphysics RGB, because the RGB uses the Night Fog Brightness Temperature Difference as its ‘Green’ Component) ineffective in outlining potential regions of low clouds. In contrast, the IFR Probability field was able to highlight low clouds under the high clouds because it fuses satellite data (ineffective at this time) with Rapid Refresh model estimates of low-level saturation.

There are regions — southern Lake Erie, for example — where the lack of high clouds allows the Brightness Temperature Difference field, and the Nighttime Microphysics RGB to operate with success in identifying low clouds.

The toggle below shows the Night Fog Brightness Temperature Difference and the IFR Probabiity fields over the eastern portion of the country.  Very small-scale (in the horizontal) features, such as river fog, are a challenge for IFR probability because the Rapid Refresh horizontal resolution of 13 km may not resolve river valleys.

GOES-16 Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm) and GOES-16 IFR Probability fieds at 1142 UTC on 8 October 2018 (Click to enlarge)

Dense Fog over the Midwestern United States

GOES-R IFR Probability Fields, 0337 – 1332 UTC on 8 August 2018 (Click to enlarge)

The longer August nights over the upper Midwest (for example, Madison Wisconsin’s night is about 70 minutes longer now than it was at the Summer Solstice) can allow for dense fog to form when light winds and clear skies follow a cloudy, damp day. The animation above shows the evolution of the GOES-R IFR Probability fields as the dense fog develops, a fog for which advisories were issued.  The horizontal extent of the widespread fog is captured well in the IFR Probability fields.  There are a couple of things worth noting.

There is a subtle — but noticeable — change in the IFR Probability Fields each hour in the animation. That change is related to model data in this fused product. Rapid Refresh Model output are used to identify regions of low-level saturation that must occur with fog. (The inclusion of this data helps IFR Probability better distinguish — compared to satellite imagery alone — between elevated stratus and fog). When output from newer model runs is incorporated (and that happens every hour), the IFR probability fields are affected. The amount of change is testimony to whether the sequential runs of the Rapid Refresh are consistent in capturing the developing fog. In this case, there were differences from one model run to the next.

GOES-R IFR Probability fields, 1202 UTC on 8 August 2018 (Click to enlarge)

Two boundaries are apparent in the animation above, captured in the 1202 UTC image above, and in the 1302 UTC image below. These boundaries are related to the Terminator, the dividing line between night and day. During an hour around sunrise, rapid changes in reflected 3.9 µm solar radiation make the detection of low clouds difficult. Temporal adjustments are incorporated into the IFR Probability fields to create a cleaner field. In the 1202 UTC image, above, the effects of sunrise are occurring along the NNW-SSE oriented boundary near the Mississippi River in southwestern WI (The boundary is parallel to the Terminator line, so it will be vertical — parallel to a Longitudinal Line — on the Equinoxes).   In the 1302 UTC image, below, the second boundary is over far northwestern Wisconsin, far southeastern Minnesota, and eastern Iowa.  The region between these two westward-propagating boundaries is where information from previous times is used in the IFR Probability fields.  Thus, when the second boundary passes, you may observe rapid changes in IFR Probability fields.

GOES-R IFR Probability fields, 1302 UTC on 8 August 2018 (Click to enlarge)

The Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm) can be used to detect stratus, and that field is also a constituent (the ‘green’ part) of the Advanced Nighttime Microphysics RGB. The animation below compares these two products used to detect stratus with IFR Probability at 1002 UTC on 8 August 2018.  The Night Fog Brightness Temperature Difference fails to highlight regions of fog over central WI (and elsewhere), so neither it nor the RGB give a consistent signal over the entire fog-shrouded region.

Night Fog Brightness Temperature Difference (10.3 µm – 3.9 µm), GOES-R IFR Probability, and Advanced Nighttime Microphysics RGB at 1002 UTC on 8 August 2018 (Click to enlarge)

Detecting Fog under a Pall of Smoke in the Pacific Northwest

HRRR forecast of Vertically-Integrated Smoke over the Pacific Northwest (for more information see text), forecast valid at 1200 UTC on 30 July 2018 (Click to enlarge)

When smoke covers a geographic region, visible detection of low-level fog is difficult because smoke can scatter or obscure the signal from the low-level clouds.  The image above shows a Vertically Integrated Smoke Forecast from a High-Resolution Rapid Refresh Model simulation in Real Earth (link). Thick smoke was predicted to occur over the coast of Oregon.

The animation below steps through the GOES-R IFR Probability, and then the ‘Blue Band’ (0.47 µm), the ‘Red Band’) (0.64 µm), the ABI channel with the highest spatial resolution, the ‘Veggie Band’ (0.86 µm) and the ‘Snow/Ice Band’ (1.61 µm). Two things of note: Because of the low sun angle, and the enhanced forward-scattering properties of smoke at low sun angle, it is very hard to detect fog through the smoke in the visible wavelengths near Sunrise. As the wavelength of the observation increases, scattering is less of an issue. In addition, smoke is more transparent to longer wavelength radiation. Thus, the cloud edges become more apparent under the smoke in the 0.86 µm and especially the 1.61 µm imagery compared to the visible.

GOES-16 IFR Probability, and GOES-16 Single Bands (Band 1, 0.47 µm, Band 2, 0.64 µm, Band 3, 0.86 µm and Band 5, 1.61 µm) at 1342 UTC on 30 July 2018, along with surface observations of Ceilings, Visibility, and Visibility Restrictions at 1400 UTC. (Click to enlarge)

GOES-16 IFR Probability can indicate the regions of fog and corresponding restrictions in visibility because it relies on longer wavelength observations from GOES-16 (3.9 µm and 10.3 µm, principally) and information about low-level saturation from the Rapid Refresh model.  Smoke is mostly transparent to radiation in the infrared unless it becomes extraordinarily thick  (indeed, that is one reason why smoke is difficult to detect at night);  thus, the brightness temperature difference between the shortwave (3.9 µm)  and longwave (10.3 µm) infrared channels on GOES-16’s ABI can highlight cloud tops made up of water droplets that occur underneath elevated smoke.

As the Sun gets higher in the sky, fog edges beneath the smoke become more apparent because forward scattering decreases.  The animation below of the visible confirms this. In contrast, the fog edge in the IFR Probability is well-represented during the entire animation (although the horizontal resolution of the infrared channels on GOES-16 (at the sub-satellite point) is only two kilometers vs. 1/2-km for the Red Visible).

Note that IFR conditions are also occurring during this animation due to smoke over southwest Oregon.  GOES-R IFR probability detects only cloud-forced IFR conditions, but not IFR conditions because of thick smoke only.  Again, this is because smoke detection in the infrared is a challenge for ABI Channels and Rapid Refresh Model output does not as yet predict visibility restrictions due to smoke.

GOES-16 ABI ‘Red Visible’ Imagery (0.64 µm), 1342 – 1557 UTC on 30 July 2018, along with surface observations of Ceilings, Visibility, and Visibility Restrictions (Click to enlarge)

GOES-16 IFR Probability, 1342 – 1557 UTC on 30 July 2018, along with surface observations of Ceilings, Visibility, and Visibility Restrictions (Click to enlarge)